
SibylSat: Using SAT as an oracle to perform a
greedy search on TOHTN Planning

Gaspard Quenard, Damien Pellier, Humbert Fiorino

Summary

1. Introduction to HTN planning
2. SAT-based TOHTN planners
3. SibylSAT

1. HTN Reminder

Classical planning

In AI planning, we have

● An initial state (set of predicates)
● A goal state (set of predicates)
● Some actions, which have preconditions and effects

The goal of a planner if to find a plan:

● A series of actions which leads from the initial state to the goal state

1. HTN Reminder

Classical planning

1. HTN Reminder

Classical planning

;; Init state
Lift_at f1
At p1 f2

;; Goal state
At p1 f3

;; Actions
(:action move
 :parameters (?f1 - Floor ?f2 - Floor)
 :precondition (lift_at ?f1)
 :effect (not (lift_at ?f1) and (lift_at ?f2))
)

(:action board
 :parameters (?p - Person ?f - Floor)
 :precondition ((at ?p ?f) (lift_at ?f))
 :effect (not (at ?p ?f) (boarded ?p))
)

(:action debark
 :parameters (?p - Person ?f - Floor)
 :precondition ((boarded ?p) (lift_at ?f))
 :effect (not (boarded ?p) (at ?p ?f))
)
)

f3

f2

f1

1. HTN Reminder

Classical planning

f3

f2

f1

Plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f3)
4. debark(p, f3)

1. HTN Reminder

Classical planning

f3

f2

f1

Plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f3)
4. debark(p, f3)

1. HTN Reminder

Classical planning

f3

f2

f1

Plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f3)
4. debark(p, f3)

1. HTN Reminder

Classical planning

f3

f2

f1

Plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f3)
4. debark(p, f3)

1. HTN Reminder

Classical planning

f3

f2

f1

Plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f3)
4. debark(p, f3)

1. HTN Reminder

Classical planning

Issues with classical AI planning:

1. Inefficiency for large problems: combinatorial explosion of states
2. Lack of intuitiveness in general plans

HTN: creating plans by
decomposing tasks into
smaller, more manageable
subtasks.

;; Task to move a person from its initial floor to its target floor
task (deliver-person ?p - person ?f1 - floor ?f2 - floor)
task (move-elevator ?f0 - floor ?f1 - floor)

: method method−already-destination
: parameters (?p − person ?f1 − floor ?f2)
: task (deliver−person ?p ?f1 ?f2)
: precondition (?f1 == ?f2)
: ordered−subtasks ()

: method method−deliver−person
: parameters (?p − person ?f0 − floor ?f1 − floor ?f2 − floor)
: task (deliver−person ?p ?f1 ?f2)
: precondition (lift−at ?f0 and ?f1 != ?f2))
: ordered−subtasks ;; Each subtask of a method can be an action or a task
(move-elevator ?f0 ?f1) ;; Move the elevator to the person floor
(board ?p ?f1) ;; Board the person
(move-elevator ?f0 ?f1) ;; Move the elevator to the person target floor
(debark ?p ?f2) ;; Debark the person

1. HTN Reminder

Hierarchical Task network (HTN)

● Abstract Task: A high-level goal that
needs to be achieved. It's not directly
executable but provides a broad
objective.

● Methods: These are ways to
decompose abstract tasks into
subtasks.

● Primitive Task: They are directly
executable actions.

1. HTN Reminder

Hierarchical Task network (HTN)

f3

f2

f1

Plan:

2. SAT-based HTN planners

Introduction

Process:

○ Translate a planning problem into an other formalism
■ SAT
■ CSP
■ SMT

○ Use a solver highly optimized for this formalism
○ If a model is found, translate it into a plan

Encoding-based solvers are popular tools for solving AI planning problems.

2. Introduction to SAT solvers

What are SAT solvers ?

Boolean formula:

(A∨B) ∧ (¬A∨C)

A ∧ ¬A

SAT solver

SAT!

A = false
B = true
C = true

UNSAT!

2. SAT-based HTN planners

Classical approach

Search space used by SAT based
planner: Path decomposition Tree

● Structure can be expanded
infinitely for recursive domain

● Search space is a subtree of
the infinite structure

2. SAT-based HTN planners

Classical approach

Encoding Path decomposition tree into formula:

1st: Add timestamp for all tasks/methods.

Then:

● Initial abstract task must be true
● Initial state at timestamp 1
● Methods at timestamp t:

○ precondition at time step t
● Actions at timestep t:

○ precondition at time step t
○ effects at time step t+1

● Hierarchy must be encoded
● Leafs must only consist of actions

…

2. SAT-based HTN planners

Classical approach

1

1 1

1 2 3 4 1

1 1

1 1

3 3

3 3

Encoding Path decomposition tree into formula:

;; Initial abstract task must be true:
Deliver_person_p1_f2_f3__1 = true

f3

f2

f1

2. SAT-based HTN planners

Classical approach

1

1 1

1 2 3 4 1

1 1

1 1

3 3

3 3

Encoding Path decomposition tree into formula:

;; Initial abstract task must be true:
Deliver_person_p1_f2_f3__1 = true
;; Initial state
Lift_at_f2__1 = true
At_p_f2__1 = true
…

f3

f2

f1

2. SAT-based HTN planners

Classical approach
Encoding Path decomposition tree into formula:

;; Initial abstract task must be true:
Deliver_person_p1_f2_f3__1 = true
;; Initial state
Lift_at_f2__1 = true
At_p_f2__1 = true
…
;; Encode hierarchy
Deliver_person_p1_f2_f3__1 =>

M-deliver-person_p1_f2_f2_f3__1 XOR
M-already-destination_p1_f2_f3__1

M-deliver-person_p1_f2_f2_f3__1 =>
Move-elevator_f2_f2__1 AND
Board_p_f2__2 AND
Move-elevator_f2_f3__3 AND
Debark_p_3__4

…

1

1 1

1 2 3 4 1

1 1

1 1

3 3

3 3

f3

f2

f1

2. SAT-based HTN planners

Classical approach
Encoding Path decomposition tree into formula:

;; Initial abstract task must be true:
Deliver_person_p1_f2_f3__1 = true
;; Initial state
Lift_at_f2__1 = true
At_p_f2__1 = true
…
;; Encode hierarchy
Deliver_person_p1_f2_f3__1 =>

M-deliver-person_p1_f2_f2_f3__1 XOR
M-already-destination_p1_f2_f3__1

M-deliver-person_p1_f2_f2_f3__1 =>
Move-elevator_f2_f2__1 AND
Board_p_f2__2 AND
Move-elevator_f2_f3__3 AND
Debark_p_3__4

…
;; Precondition and effects of actions
Move_f2_f3__3 => Lift_at_f2__3
Move_f2_f3__3 => ⌐Lift_at_f2__4 AND Lift_at_f3__4

1

1 1

1 2 3 4 1

1 1

1 1

3 3

3 3

f3

f2

f1

2. SAT-based HTN planners

Classical approach

Boolean formula

SAT solver

f3

f2

f1

2. SAT-based HTN planners

Classical approach
HTN problem

Initialize PDT

Formula is
satisfiable

?

Create SAT
formula

Extract Plan

Yes

No

Expand PDT

2. SAT-based HTN planners

Classical approach
HTN problem

Initialize PDT

Formula is
satisfiable

?

Create SAT
formula

Extract Plan

Yes

No

Expand PDT
Difference between
SAT-based HTN planners ?

2. SAT-based HTN planners

Classical approach
HTN problem

Initialize PDT

Formula is
satisfiable

?

Create SAT
formula

Extract Plan

Yes

No

Expand PDT
Expansion PDT: Breadth
first search along the depth
of the hierarchy

2. SAT-based HTN planners

Classical approach

Expansion:
breadth-first

2. SAT-based HTN planners

Classical approach

Plan solution found:

2. SAT-based HTN planners

Classical approach

Problem of current SAT-based HTN planners:

● Search is uninformed
○ Can be inefficient when dealing with large

search spaces

2. SAT-based HTN planners

Classical approach

50% of search space
developed is not used…

More time spend by the
solver to search for a
solution in a bigger search
space

2. Encoding based solvers

Question: Is it possible to guide the
search in SAT-based planner using
heuristic ?

HTN problem

Initialize PDT

Formula is
satisfiable

?

Create SAT
formula

Extract Plan

Yes

No

Expand PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

HTN problem

Initialize PDT

Formula
is

satisfiable
?

Create SAT
formula

Extract Plan

Yes

No

1. Transform leaf abstract tasks into
actions with specific preconditions
and effects. (Relaxation of the
search space)

2. Find a solution in this relaxed
PDT using a SAT solver (act as
our heuristic)

3. Develop all abstract tasks of the
relaxed plan in the PDT

Expansion PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

HTN problem

Initialize PDT

Formula
is

satisfiable
?

Create SAT
formula

Extract Plan

Yes

No

1. Transform leaf abstract tasks into
actions with specific preconditions
and effects. (Relaxation of the
search space)

2. Find a solution in this relaxed
PDT using a SAT solver (act as
our heuristic)

3. Develop all abstract tasks of the
relaxed plan in the PDT

Expansion PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

HTN problem

Initialize PDT

Formula
is

satisfiable
?

Create SAT
formula

Extract Plan

Yes

No

1. Transform leaf abstract tasks into
actions with specific preconditions
and effects. (Relaxation of the
search space)

2. Find a solution in this relaxed
PDT using a SAT solver (act as
our heuristic)

3. Develop all abstract tasks of the
relaxed plan in the PDT

Expansion PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

HTN problem

Initialize PDT

Formula
is

satisfiable
?

Create SAT
formula

Extract Plan

Yes

No

1. Transform leaf abstract tasks into
actions with specific preconditions
and effects. (Relaxation of the
search space)

2. Find a solution in this relaxed
PDT using a SAT solver (act as
our heuristic)

3. Develop all abstract tasks of the
relaxed plan in the PDT

Expansion PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

HTN problem

Initialize PDT

Formula
is

satisfiable
?

Create SAT
formula

Extract Plan

Yes

No

1. Transform leaf abstract tasks into
actions with specific preconditions
and effects. (Relaxation of the
search space)

2. Find a solution in this relaxed
PDT using a SAT solver (act as
our heuristic)

3. Develop all abstract tasks of the
relaxed plan in the PDT

Expansion PDT

3. SibylSAT

Using SAT as an oracle to perform greedy search

1. Often multiple relaxed
solutions available…

2. Relaxed solution chosen by
the solver does not
necessarily lead to a
solution… No solution here !

3. SibylSAT

Determinate preconditions and effects of abstract tasks

A lot of research on the subject:

● Planners:
○ Lilotane
○ HyperTensionN

● Papers
○ Revealing Hidden Preconditions and Effects of Compound HTN

Planning Tasks — A Complexity Analysis
○ A Look-Ahead Technique for Search-Based HTN Planning:

Reducing the Branching Factor by Identifying Inevitable Task
Refinements

3. SibylSAT

Results
Planners: state of the art SAT-based planners

● PandaPisatt-1iB (Block compression and invariant
pruning for sat-based totally-ordered htn planning)

● Lilotane (Lilotane: A lifted sat-based approach to
hierarchical planning)

3. SibylSAT

Results

Do we develop less nodes
in the search space with
SibylSAT ?

3. SibylSAT

https://github.com/gaspard-quenard/sibylsat https://ebooks.iospress.nl/doi/10.3233/FAIA240987

Thank you for your
attention

Questions ?

1. Background Information

Encoding-based solvers for HTN
Solver’s name Solver Year Technical details Features

Encoding HTN Planning in
Propositional Logic

SAT 1998 Grounded First SAT encoding for totally
ordered HTN. Not able to handle

recursive problems

ASP SHOP ASP 2003 Grounded Based on the principles of the
SHOP planner

totSAT SAT 2018 Grounded Based on the structure of the
decomposition tree

SAT cmx SAT 2018 Grounded First Improvement over totSAT to
handle partially ordered HTN

SAT-F SAT 2019 Grounded Second Improvement over totSAT
to handle partially ordered HTN

TreeRex SAT 2019 Grounded Based on the decomposition tree.
Use incremental SAT

Lilotane SAT 2021 Lifted Lifted version of TreeRex

PandaPIsatt SAT 2021 Grounded Improvement over totSAT

4. SibylSAT

Using SAT as an oracle to perform greedy search

● Abstract tasks transformed into actions…
○ For all plan solution, all relaxed plans solution which

can lead to this plan solution must be executable
■ Need overapproximation of effects
■ Need underapproximation of preconditions

● Relaxed solution found…
○ Does not necessarily lead to a solution…

4. SibylSAT

Determinate preconditions and effects of abstract tasks

For the effects:

● For a method: eff(m) = union
effects of all subtasks

● For an abstract task: eff(t) =
union effects of all methods
which can accomplish task

eff(M1) =
eff(A1) U eff(A2)

eff(M0) =
eff(A0) U eff(A3)

eff(T1) = eff(M0) U eff(M1)

4. SibylSAT

Determinate preconditions and effects of abstract tasks

For the preconditions:

● For a method: pre(m) = All
preconditions of the subtasks
which cannot be accomplish by
a previous subtask

● For an abstract task: Intersection
of the preconditions of the
methods which can accomplish
the task

A
B

C D
A

C
D

D
B

A B

A
D

D

1. HTN Reminder

Classical planning

f3

f2

f1

A non intuitive plan:

1. move(f1, f2)
2. board(p, f2)
3. move(f2, f1)
4. debark(p, f1)
5. move(f1, f3)
6. move(f3, f2)
7. move(f2, f1)
8. board(p, f1)
9. move(f1, f3)

10. debark(p, f3)

