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Formal semantics for logics of cognitive attitudes

Two types of cognitive attitudes
▶ Epistemic: belief, knowledge, acceptance,...
▶ Motivational: desire, goal, preference,...

Standard approach: multi-relational Kripke structures
Main limitation: they are not succinct

▶ Number of possible worlds is huge in real applications
▶
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Our contribution

Novel approach to cognitive attitudes and their interrelations relying on the
notion of belief base
Idea of using belief bases as a semantics for multi-agent epistemic logic has been
elaborated in previous work:

Lorini, E. (2020). Rethinking Epistemic Logic with Belief Bases. Artificial Intelligence, 282.

Lorini, E. (2018). In Praise of Belief Bases: Doing Epistemic Logic Without Possible Worlds. AAAI-2018.

Advantages:
▶ Succinct semantics: agents’ accessibility relations computed from their belief bases
▶ Well-suited for model checking and epistemic/cognitive planning
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Semantics: state

S =
(
(Bi)i∈Agt,V

)
agents’ belief bases ⊆ L0

valuation ⊆ Atmstate

L0
def
= α ::= p | ¬α | α ∧ α | △iα △iα : “agent i explicitly believes that α”

with p ranging over Atm

S |= p if p ∈ V

S |= ¬α if S ̸|= α

S |= α1 ∧ α2 if S |= α1 and S |= α2

S |= △iα if α ∈ Bi
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Semantics: desire bases

Appetitive desire base D+
i (S) = {α ∈ L0 : α → goodi ∈ Bi}

Aversive desire base D−
i (S) = {α ∈ L0 : α → badi ∈ Bi}

Non-Humean view: desire-as-belief (DAB) thesis [Lewis, 1988]
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Semantics: accessibility relations

Let S =
(
(Bi)i∈Agt,V

)
, S′ =

(
(B′

i)i∈Agt,V ′) be two states. Then,

Epistemic relation: SEiS′ if and only if ∀α ∈ Bi, S′ |= α

Attraction relation: SAiS′ if and only if ∃α ∈ D+
i (S) s.t. S′ |= α

Repulsion relation: SRiS′ if and only if ∃α ∈ D−
i (S) s.t. S′ |= α
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Language

L def
= φ ::= α | ¬φ | φ ∧ φ | 2iφ | ,iφ | /iφ | [,]iφ | [/]iφ

with α ranging over L0 and i ranging over Agt

2iφ : “agent i implicitly believes that φ”
,iφ : “agent i is completely attracted to the fact that φ”
/iφ : “agent i is completely repelled by the fact that φ”

[,]iφ : “agent i is realistically attracted to the fact that φ”
[/]iφ : “agent i is realistically repelled by the fact that φ”

7



Language

L def
= φ ::= α | ¬φ | φ ∧ φ | 2iφ | ,iφ | /iφ | [,]iφ | [/]iφ

with α ranging over L0 and i ranging over Agt

2iφ : “agent i implicitly believes that φ”
,iφ : “agent i is completely attracted to the fact that φ”
/iφ : “agent i is completely repelled by the fact that φ”

[,]iφ : “agent i is realistically attracted to the fact that φ”
[/]iφ : “agent i is realistically repelled by the fact that φ”

7



Interpretation of formulas
Wrt a state S and a set of states (context) U:

(S,U) |= α if S |= α

(S,U) |= 2iφ if ∀S′ ∈ U, if SEiS′ then (S′,U) |= φ

(S,U) |= ,iφ if ∀S′ ∈ U, if (S′,U) |= φ then SAiS′

(S,U) |= /iφ if ∀S′ ∈ U, if (S′,U) |= φ then SRiS′

(S,U) |= [,]iφ if ∀S′ ∈ U, if (S′,U) |= φ and SEiS′ then SAiS′

(S,U) |= [/]iφ if ∀S′ ∈ U, if (S′,U) |= φ and SEiS′ then SRiS′

Theorem

The operators ,i, /i, [,]i and [/]i are not expressible with the other modalities or
each other.

⇒ A sound and complete axiomatization is given in the paper
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Cognitive positions and preferences

def
= ,iφ ¬,iφ

/iφ Aiφ M↓
i φ

(ambivalent) (demotivated)
¬/iφ M↑

i φ Iiφ
(motivated) (indifferent)

Table: Cognitive attitudes

def
= [,]iφ ¬[,]iφ

RAiφ RM↓
i φ

[/]iφ (realistically (realistically
ambivalent) (demotivated)

RM↑
i φ RIiφ

¬[/]iφ (realistically (realistically
motivated) (indifferent)

Table: Realistic cognitive attitudes

ψ ≺i φ
def
= (M↑

i φ ∧ ¬M↑
i ψ) ∨ (M↓

i ψ ∧ ¬M↓
i φ)

ψ ≺real
i φ

def
= (RM↑

i φ ∧ ¬RM↑
i ψ) ∨ (RM↓

i ψ ∧ ¬RM↓
i φ)

For ◀∈ {≺i,≺real
i }:

|= ¬(φ ◀ φ)

|= (ψ ◀ φ) → ¬(φ ◀ ψ)

|=
(
(φ1 ◀ φ2) ∧ (φ2 ◀ φ3)

)
→ (φ1 ◀ φ3)
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Ldyn: extension with dynamic operators [π]

Lprog
def
= π ::= +iα | −iα | π;π | π ∪ π | ?φ

belief expansion
belief forgetting

[π]φ : “φ holds after program π has been executed”

(S,U) |= [π]φ if ∀S′ ∈ U, if SPU
π S′ then (S′,U) |= φ

with:

SPU
+iα

S′ iff V = V′,B+iα
i = Bi ∪ {α} and ∀j ̸= i,B+iα

j = Bj

SPU
−iα

S′ iff V = V′,B−iα
i = Bi \ {α} and ∀j ̸= i,B−iα

j = Bj

SPU
π1;π2

S′ iff ∃S′′ ∈ U such that SPU
π1

S′′ and S′′PU
π2

S′

SPU
π1∪π2

S′ iff SPU
π1

S′ or SPU
π2

S′

SPU
?φS′ iff S′ = S and (S,U) |= φ
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Model checking

(S0, SΓ)|= φ0?

context induced by agent vocabulary profile Γ = (Γi)i∈Agt

formula in Ldynfinite state

SΓ =
{

S =
(
(Bi)i∈Agt,V

)
∈ S : ∀i ∈ Agt,Bi ⊆ Γi

}
with Γi ⊆ L0 finite

Theorem
The model checking problem for Ldyn is PSPACE-complete.

Poly-size reduction into TQBF given in the paper
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Example: Bob and the messy room

What to tell him to convince him 
to tidy up the rooom?

A1 = You won't be allowed to watch 
TV, if you do not tidy up your room!

A2 = I'll prepare some good crepes for 
you, if you tidy up your room!

A3 = Don't worry, you won't get tired 
if you tidy up the room!

S0 =(BBob, V0)

BBob ={tdBob → tiBob,

tiBob → badBob,

crBob → goodBob,

¬tvBob → badBob}
V0 =∅

(S0, SΓ) |= (tdBob ≺real
Bob ¬tdBob)

with Γ = (BBob)

A1
def
= +Bob (¬tdBob → ¬tvBob)

A2
def
= +Bob (tdBob → crBob)

A3
def
= −Bob (tdBob → tiBob)

πtalk
def
=

⋃
A,A′∈{A1,A2,A3}:

A ̸=A′

A; A′

(S0, SΓ) |= [πtalk](¬tdBob ≺real
Bob tdBob)

Generalized to k children in the paper!
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Experimental analysis

|Agt| 1 10 20 40 60
|Atm| 6 60 120 240 360
|Γi| 4 4 4 4 4
|SΓ| 218 2180 2360 2720 21080

exec. time (sec.) 0.07 0.19 0.57 2.38 5.67

Table: Model checker performance on the example.
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