A Computationally Grounded Framework for Cognitive Attitudes

> Tiago de Lima¹, Emiliano Lorini², Elise Perrotin³, François Schwarzentruber⁴

¹CRIL, Université d'Artois, France ²IRIT, CNRS, Toulouse University, France ³National Institute of Advanced Industrial Science and Technology, Japan ⁴ENS Lyon, France

AAAI 2025

Formal semantics for logics of cognitive attitudes

- Two types of cognitive attitudes
 - Epistemic: belief, knowledge, acceptance,...
 - Motivational: desire, goal, preference,...

Formal semantics for logics of cognitive attitudes

- Two types of cognitive attitudes
 - Epistemic: belief, knowledge, acceptance,...
 - Motivational: desire, goal, preference,...
- Standard approach: multi-relational Kripke structures

Formal semantics for logics of cognitive attitudes

- Two types of cognitive attitudes
 - Epistemic: belief, knowledge, acceptance,...
 - Motivational: desire, goal, preference,...
- Standard approach: multi-relational Kripke structures
- Main limitation: they are not succinct
 - Number of possible worlds is huge in real applications
 - $\binom{20}{5} \times \binom{15}{5} \times \binom{10}{5} \times \binom{5}{5} = 1.1732745024 \times 10^{10}$ possible equitable distributions of 20 different fruits between 4 agents

Our contribution

- Novel approach to cognitive attitudes and their interrelations relying on the notion of belief base
- Idea of using belief bases as a semantics for multi-agent epistemic logic has been elaborated in previous work:

Lorini, E. (2020). Rethinking Epistemic Logic with Belief Bases. *Artificial Intelligence*, 282. Lorini, E. (2018). In Praise of Belief Bases: Doing Epistemic Logic Without Possible Worlds. *AAAI-2018*.

Our contribution

- Novel approach to cognitive attitudes and their interrelations relying on the notion of belief base
- Idea of using belief bases as a semantics for multi-agent epistemic logic has been elaborated in previous work:

Lorini, E. (2020). Rethinking Epistemic Logic with Belief Bases. *Artificial Intelligence*, 282. Lorini, E. (2018). In Praise of Belief Bases: Doing Epistemic Logic Without Possible Worlds. *AAAI-2018*.

• Advantages:

- Succinct semantics: agents' accessibility relations computed from their belief bases
- Well-suited for model checking and epistemic/cognitive planning

Semantics: state

 $\mathcal{L}_0 \stackrel{\text{def}}{=} \alpha ::= p \mid \neg \alpha \mid \alpha \land \alpha \mid \triangle_i \alpha \quad \triangle_i \alpha : \text{``agent } i \text{ explicitly believes that } \alpha ``$

with p ranging over Atm

$$S \models p \quad \text{if} \quad p \in V$$

$$S \models \neg \alpha \quad \text{if} \quad S \not\models \alpha$$

$$S \models \alpha_1 \land \alpha_2 \quad \text{if} \quad S \models \alpha_1 \text{ and } S \models \alpha_2$$

$$S \models \triangle_i \alpha \quad \text{if} \quad \alpha \in B_i$$

Semantics: desire bases

Appetitive desire base $D_i^+(S) = \{ \alpha \in \mathcal{L}_0 : \alpha \to \text{good}_i \in B_i \}$ Aversive desire base $D_i^-(S) = \{ \alpha \in \mathcal{L}_0 : \alpha \to \text{bad}_i \in B_i \}$

Non-Humean view: desire-as-belief (DAB) thesis [Lewis, 1988]

Semantics: accessibility relations

Let $S = ((B_i)_{i \in Agt}, V), S' = ((B'_i)_{i \in Agt}, V')$ be two states. Then,

Epistemic relation: $S\mathcal{E}_i S'$ if and only if $\forall \alpha \in B_i, S' \models \alpha$ <u>Attraction relation</u>: $S\mathcal{A}_i S'$ if and only if $\exists \alpha \in D_i^+(S)$ s.t. $S' \models \alpha$ Repulsion relation: $S\mathcal{R}_i S'$ if and only if $\exists \alpha \in D_i^-(S)$ s.t. $S' \models \alpha$

Language

$$\mathcal{L} \stackrel{\text{def}}{=} \varphi ::= \alpha | \neg \varphi | \varphi \land \varphi | \Box_i \varphi | \circledast_i \varphi | \circledast_i \varphi | [©]_i \varphi | [©]_i \varphi$$

with α ranging over \mathcal{L}_0 and *i* ranging over Agt

Language

 $\mathcal{L} \stackrel{\text{def}}{=} \varphi ::= \alpha | \neg \varphi | \varphi \land \varphi | \Box_i \varphi | \odot_i \varphi | \odot_i \varphi | [\odot]_i \varphi | [\odot]_i \varphi | [\odot]_i \varphi$ with α ranging over \mathcal{L}_0 and *i* ranging over Agt

 $\Box_i \varphi : \text{``agent } i \text{ implicitly believes that } \varphi''$ $\odot_i \varphi : \text{``agent } i \text{ is completely attracted to the fact that } \varphi''$ $\odot_i \varphi : \text{``agent } i \text{ is completely repelled by the fact that } \varphi''$ $[\odot]_i \varphi : \text{``agent } i \text{ is realistically attracted to the fact that } \varphi''$ $[\odot]_i \varphi : \text{``agent } i \text{ is realistically repelled by the fact that } \varphi''$

Wrt a state *S* and a set of states (*context*) *U*:

 $(S, U) \models \alpha$ if $S \models \alpha$

Wrt a state *S* and a set of states (*context*) *U*:

 $(S, U) \models \alpha \quad \text{if} \quad S \models \alpha$ $(S, U) \models \Box_i \varphi \quad \text{if} \quad \forall S' \in U, \text{ if } S\mathcal{E}_i S' \text{ then } (S', U) \models \varphi$

Wrt a state *S* and a set of states (*context*) *U*:

$$\begin{array}{ll} (S,U) \models \alpha & \text{if} \quad S \models \alpha \\ (S,U) \models \Box_i \varphi & \text{if} \quad \forall S' \in U, \text{ if } S\mathcal{E}_i S' \text{ then } (S',U) \models \varphi \\ (S,U) \models \odot_i \varphi & \text{if} \quad \forall S' \in U, \text{ if } (S',U) \models \varphi \text{ then } S\mathcal{A}_i S' \\ (S,U) \models \odot_i \varphi & \text{if} \quad \forall S' \in U, \text{ if } (S',U) \models \varphi \text{ then } S\mathcal{R}_i S' \end{array}$$

Wrt a state S and a set of states (context) U:

 $\begin{array}{rcl} (S,U)\models\alpha & \text{if} & S\models\alpha\\ (S,U)\models\Box_i\varphi & \text{if} & \forall S'\in U, \text{ if } S\mathcal{E}_iS' \text{ then } (S',U)\models\varphi\\ (S,U)\models\odot_i\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{A}_iS'\\ (S,U)\models\odot_i\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{R}_iS'\\ (S,U)\models[\odot]_i\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_iS' \text{ then } S\mathcal{A}_iS'\\ (S,U)\models[\odot]_i\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_iS' \text{ then } S\mathcal{R}_iS'\\ \end{array}$

Wrt a state S and a set of states (context) U:

$$\begin{array}{lll} (S,U)\models\alpha & \text{if} & S\models\alpha \\ (S,U)\models\Box_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } S\mathcal{E}_{i}S' \text{ then } (S',U)\models\varphi \\ (S,U)\models\odot_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{A}_{i}S' \\ (S,U)\models\odot_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{R}_{i}S' \\ (S,U)\models[\odot]_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_{i}S' \text{ then } S\mathcal{A}_{i}S' \\ (S,U)\models[\odot]_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_{i}S' \text{ then } S\mathcal{R}_{i}S' \end{array}$$

Theorem

The operators \odot_i , \odot_i , $[\odot]_i$ and $[\odot]_i$ are not expressible with the other modalities or each other.

Wrt a state S and a set of states (context) U:

$$\begin{array}{lll} (S,U)\models\alpha & \text{if} & S\models\alpha \\ (S,U)\models\Box_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } S\mathcal{E}_{i}S' \text{ then } (S',U)\models\varphi \\ (S,U)\models\odot_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{A}_{i}S' \\ (S,U)\models\odot_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ then } S\mathcal{R}_{i}S' \\ (S,U)\models[\odot]_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_{i}S' \text{ then } S\mathcal{A}_{i}S' \\ (S,U)\models[\odot]_{i}\varphi & \text{if} & \forall S'\in U, \text{ if } (S',U)\models\varphi \text{ and } S\mathcal{E}_{i}S' \text{ then } S\mathcal{R}_{i}S' \end{array}$$

Theorem

The operators \odot_i , \odot_i , $[\odot]_i$ and $[\odot]_i$ are not expressible with the other modalities or each other.

 \Rightarrow A sound and complete axiomatization is given in the paper

Cognitive positions and preferences

def	$\odot_i \varphi$	$\neg \odot_i \varphi$		
$\odot_i \varphi$	$A_i \varphi$	$M_i^\downarrow \varphi$		
-	(ambivalent)	(demotivated)		
$\neg \odot_i \varphi$	$M_{i}^{\uparrow}\varphi$	$I_i \varphi$		
	(motivated)	(indifferent)		

Table: Cognitive attitudes

₫ef	$[\odot]_i \varphi$	$\neg [\odot]_i \varphi$
	$RA_i \varphi$	$RM_i^\downarrow arphi$
$[\odot]_i \varphi$	(realistically	(realistically
	ambivalent)	(demotivated)
	$RM_i^\uparrow \varphi$	$RI_i \varphi$
$\neg [\odot]_i \varphi$	(realistically	(realistically
	motivated)	(indifferent)

Table: Realistic cognitive attitudes

Cognitive positions and preferences

def	$\odot_i \varphi$	$\neg \odot_i \varphi$		
$\odot_i \varphi$	$A_i \varphi$	$M_i^\downarrow \varphi$		
	(ambivalent)	(demotivated)		
$\neg \odot_i \varphi$	$M_i^\uparrow \varphi$	$I_i \varphi$		
	(motivated)	(indifferent)		

Table: Cognitive attitudes

₫ef	$[\odot]_i \varphi$	$\neg [\odot]_i \varphi$	
	$RA_i \varphi$	$RM_i^\downarrow \varphi$	
$[\odot]_i \varphi$	(realistically	(realistically	
	ambivalent)	(demotivated)	
	$RM_i^\uparrow \varphi$	$RI_i \varphi$	
$\neg [\odot]_i \varphi$	(realistically	(realistically	
	motivated)	(indifferent)	

Table: Realistic cognitive attitudes

$$\begin{split} \psi \prec_i \varphi \stackrel{\text{def}}{=} & (\mathsf{M}_i^{\uparrow} \varphi \wedge \neg \mathsf{M}_i^{\uparrow} \psi) \vee (\mathsf{M}_i^{\downarrow} \psi \wedge \neg \mathsf{M}_i^{\downarrow} \varphi) \\ \psi \prec_i^{\text{real}} \varphi \stackrel{\text{def}}{=} & (\mathsf{R}\mathsf{M}_i^{\uparrow} \varphi \wedge \neg \mathsf{R}\mathsf{M}_i^{\uparrow} \psi) \vee (\mathsf{R}\mathsf{M}_i^{\downarrow} \psi \wedge \neg \mathsf{R}\mathsf{M}_i^{\downarrow} \varphi) \end{split}$$

For $\blacktriangleleft \in \{\prec_i, \prec_i^{\mathsf{real}}\}$:

$$\models \neg(\varphi \blacktriangleleft \varphi) \models (\psi \blacktriangleleft \varphi) \rightarrow \neg(\varphi \blacktriangleleft \psi) \models ((\varphi_1 \blacktriangleleft \varphi_2) \land (\varphi_2 \blacktriangleleft \varphi_3)) \rightarrow (\varphi_1 \blacktriangleleft \varphi_3)$$

\mathcal{L}_{dyn} : extension with dynamic operators $[\pi]$

 $\begin{array}{ccc} & \text{belief expansion} \\ \downarrow & \swarrow & \text{belief forgetting} \\ \mathcal{L}_{\text{prog}} & \stackrel{\text{def}}{=} \pi & ::= +_i \alpha \mid -_i \alpha \mid \pi; \pi \mid \pi \cup \pi \mid ?\varphi \end{array}$

 $[\pi]\varphi: ``\varphi$ holds after program π has been executed"

 \mathcal{L}_{dyn} : extension with dynamic operators $[\pi]$

 $[\pi]\varphi$: " φ holds after program π has been executed"

 $(S, U) \models [\pi] \varphi$ if $\forall S' \in U$, if $S\mathcal{P}_{\pi}^{U}S'$ then $(S', U) \models \varphi$

with:

$$\begin{split} S\mathcal{P}^{U}_{+\alpha}S' & \text{iff} \quad V = V', B_{i}^{+i\alpha} = B_{i} \cup \{\alpha\} \text{ and } \forall j \neq i, B_{j}^{+i\alpha} = B_{j} \\ S\mathcal{P}^{U}_{-i\alpha}S' & \text{iff} \quad V = V', B_{i}^{-i\alpha} = B_{i} \setminus \{\alpha\} \text{ and } \forall j \neq i, B_{j}^{-i\alpha} = B_{j} \\ S\mathcal{P}^{U}_{\pi_{1};\pi_{2}}S' & \text{iff} \quad \exists S'' \in U \text{ such that } S\mathcal{P}^{U}_{\pi_{1}}S'' \text{ and } S''\mathcal{P}^{U}_{\pi_{2}}S' \\ S\mathcal{P}^{U}_{\pi_{1}\cup\pi_{2}}S' & \text{iff} \quad S\mathcal{P}^{U}_{\pi_{1}}S' \text{ or } S\mathcal{P}^{U}_{\pi_{2}}S' \\ S\mathcal{P}^{U}_{?\varphi}S' & \text{iff} \quad S' = S \text{ and } (S, U) \models \varphi \end{split}$$

Model checking

context induced by agent vocabulary profile $\Gamma = (\Gamma_i)_{i \in Agt}$ finite state \downarrow formula in \mathcal{L}_{dyn} $(S_0, \mathbf{S}_{\Gamma}) \models \varphi_0$?

$$\mathbf{S}_{\Gamma} = \left\{ S = \left((B_i)_{i \in Agt}, V \right) \in \mathbf{S} : \forall i \in Agt, B_i \subseteq \Gamma_i \right\} \text{ with } \Gamma_i \subseteq \mathcal{L}_0 \text{ finite}$$

Model checking

context induced by agent vocabulary profile $\Gamma = (\Gamma_i)_{i \in Agt}$ finite state \downarrow formula in \mathcal{L}_{dyn} $(S_0, \mathbf{S}_{\Gamma}) \models \varphi_0$?

$$\mathbf{S}_{\Gamma} = \left\{ S = \left((B_i)_{i \in Agt}, V \right) \in \mathbf{S} : \forall i \in Agt, B_i \subseteq \Gamma_i \right\} \text{ with } \Gamma_i \subseteq \mathcal{L}_0 \text{ finite}$$

Theorem

The model checking problem for \mathcal{L}_{dyn} *is PSPACE-complete.*

Poly-size reduction into TQBF given in the paper

$$\begin{split} S_0 = & (B_{Bob}, V_0) \\ B_{Bob} = & \{ td_{Bob} \rightarrow ti_{Bob}, \\ & ti_{Bob} \rightarrow \mathsf{bad}_{Bob}, \\ & cr_{Bob} \rightarrow \mathsf{good}_{Bob}, \\ & \neg tv_{Bob} \rightarrow \mathsf{bad}_{Bob} \} \\ V_0 = & \emptyset \end{split}$$

$$(S_0, \mathbf{S}_{\Gamma}) \models (td_{Bob} \prec_{Bob}^{\text{real}} \neg td_{Bob})$$

with $\Gamma = (B_{Bob})$

$$S_{0} = (B_{Bob}, V_{0})$$

$$B_{Bob} = \{td_{Bob} \rightarrow ti_{Bob},$$

$$ti_{Bob} \rightarrow bad_{Bob},$$

$$cr_{Bob} \rightarrow good_{Bob},$$

$$\neg tv_{Bob} \rightarrow bad_{Bob}\}$$

$$V_{0} = \emptyset$$

$$(S_0, \mathbf{S}_{\Gamma}) \models (td_{Bob} \prec_{Bob}^{\text{real}} \neg td_{Bob})$$

with $\Gamma = (B_{Bob})$

$$A_{1} \stackrel{\text{def}}{=} +_{Bob} (\neg td_{Bob} \rightarrow \neg tv_{Bob})$$

$$A_{2} \stackrel{\text{def}}{=} +_{Bob} (td_{Bob} \rightarrow cr_{Bob})$$

$$A_{3} \stackrel{\text{def}}{=} -_{Bob} (td_{Bob} \rightarrow ti_{Bob})$$

$$\pi_{talk} \stackrel{\text{def}}{=} \bigcup_{\substack{A,A' \in \{A_{1},A_{2},A_{3}\}:\\A \neq A'}} A; A'$$

$$(S_{0}, \mathbf{S}_{\Gamma}) \models [\pi_{talk}] (\neg td_{Bob} \prec_{Bob}^{\text{real}} td_{Bob})$$

$$\begin{split} S_0 = & (B_{Bob}, V_0) \\ B_{Bob} = & \{ td_{Bob} \rightarrow ti_{Bob}, \\ & ti_{Bob} \rightarrow \mathsf{bad}_{Bob}, \\ & cr_{Bob} \rightarrow \mathsf{good}_{Bob}, \\ & \neg tv_{Bob} \rightarrow \mathsf{bad}_{Bob} \} \\ V_0 = & \emptyset \end{split}$$

$$(S_0, \mathbf{S}_{\Gamma}) \models (td_{Bob} \prec_{Bob}^{\mathsf{real}} \neg td_{Bob})$$

with $\Gamma = (B_{Bob})$

$$A_{1} \stackrel{\text{def}}{=} +_{Bob} (\neg td_{Bob} \rightarrow \neg tv_{Bob})$$

$$A_{2} \stackrel{\text{def}}{=} +_{Bob} (td_{Bob} \rightarrow cr_{Bob})$$

$$A_{3} \stackrel{\text{def}}{=} -_{Bob} (td_{Bob} \rightarrow ti_{Bob})$$

$$\pi_{talk} \stackrel{\text{def}}{=} \bigcup_{\substack{A,A' \in \{A_{1},A_{2},A_{3}\}:\\A \neq A'}} A; A'$$

$$(S_{0}, \mathbf{S}_{\Gamma}) \models [\pi_{talk}] (\neg td_{Bob} \prec_{Rob}^{\text{real}} td_{Bob})$$

Generalized to k children in the paper!

Experimental analysis

Agt	1	10	20	40	60
Atm	6	60	120	240	360
$ \Gamma_i $	4	4	4	4	4
$ \mathbf{S}_{\Gamma} $	2^{18}	2^{180}	2^{360}	2^{720}	2^{1080}
exec. time (sec.)	0.07	0.19	0.57	2.38	5.67

Table: Model checker performance on the example.