MAFTEC

Post-Hoc Interpretation of POMDP policies

Geoffrey Laforest, Olivier Buffet, Alexandre Niveau, Bruno Zanuttini

Caen University

March 2025

1 Introduction

- **2** Dealing with POMDPs
- **3** From histories to epistemic states
- Post-hoc interpretation of policies Method
- **G** Limitations and future work

1 Introduction

- Dealing with POMDPs
- 3 From histories to epistemic states
- Post-hoc interpretation of policies Method
- **5** Limitations and future work

Main goal: redescribe pre-computed POMDP policies to make them more compact and interpretable

Idea: use symbolic features of the form $\mathbf{K}(x)$, $\mathbf{K}(\neg x)$, $\mathbf{K}(x \lor y)$.

Hopes

- Compress history and policies thanks to epistemic states representation
- Explainability
- KBP synthesis (ultimately going back to RL setting)

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

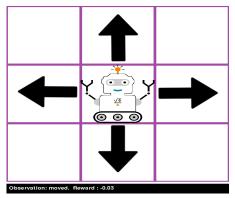
A POMDP is a tuple $\langle S, A, O, P, R, O, \gamma \rangle$

- S is a finite set of states
- \mathcal{A} is a finite set of actions a
- \mathcal{O} is a finite set of observations
- **P** is a state transition matrix, s.t. $P_{ss'}^{a} = P(S_{t+1} = s' | S_t = s, A_t = a)$
- \mathcal{R} is a reward function, s.t. $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- O is an observation function
- $\circ \ \gamma$ is a discount factor, $\gamma \in [0, 1]$

POMDP - Wumpus example

The **Wumpus** example as a guiding thread

- Deterministic action/observation/reward model
- *A* = {*move-left, move-right, move-top, move-down, smell*}
- $\mathcal{O} = \{wumpus-hit, goal-reached, moved, wumpus, no-wumpus\}$



Introduction

Dealing with POMDPs

3 From histories to epistemic states

Post-hoc interpretation of policies - Method

b Limitations and future work

Dealing with POMDPs - History-based approaches

Defintion of History

A history H_t is a sequence of actions and observations

$$H_t = A_0 O_1, \ldots, A_{t-1} O_t$$

Defintion of a Belief state

A belief state b_h is a distribution over states conditioned on the history h

$$b_h = [P(S_t = s_1 | H_t = h), \dots, P(S_t = s_n | H_t = h)]$$

The Belief update

$$b_{h}^{\prime}\left(s^{\prime}
ight)=\eta\mathcal{O}\left(o\mid s^{\prime},a
ight)\sum_{s\in\mathcal{S}}\mathcal{P}\left(s^{\prime}\mid s,a
ight)b_{h}(s)$$

G.L, O.B, B.Z., A.N.

Introduction

Dealing with POMDPs

3 From histories to epistemic states

Post-hoc interpretation of policies - Method

B Limitations and future work

Wumpus trajectory example (1)

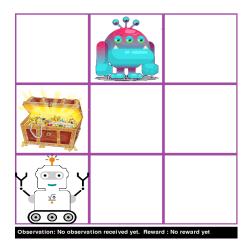


Figure: Real state of the world (unknown to the agent)

Wumpus trajectory example (2)

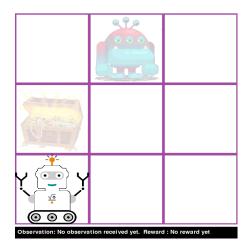


Figure: Initial State. Agent only sees his position

G.L, O.B, B.Z., A.N.

Wumpus trajectory example (3)

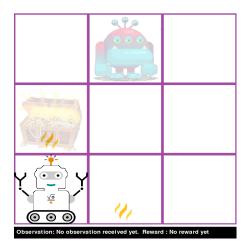


Figure: First action: smell

Wumpus trajectory example (4)

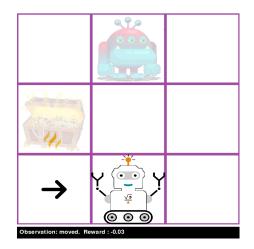


Figure: Move

Wumpus trajectory example (5)

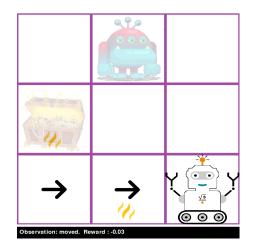


Figure: Move

G.L, O.B, B.Z., A.N.

Wumpus trajectory example (6)

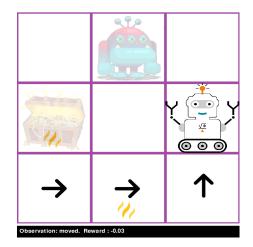


Figure: Move

Wumpus trajectory example (7)

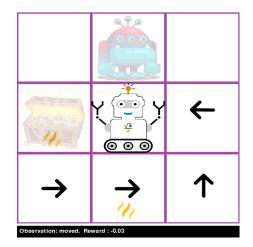


Figure: Move

Wumpus trajectory example (8)

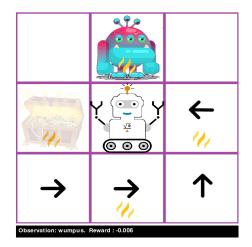


Figure: Smell. Deduction of the Wumpus position

Policy: mapping from histories to sets of actions

Typical representations:

- Tree over actions/observations
- Automaton (finite-state controller)

Limitations:

- Huge size: $(|A| \times |O|)^t$
- Poor readability (abstract states)

Post-Hoc Interpretation of policies

• Idea

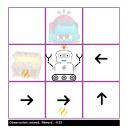
 Transform belief-based policies into more interpretable policies defined on the epistemic state space
 post-hoc interpretation of policies

- Post-hoc interpretation of policies
 - Obtain a (near-)optimal policy using an off-the-shelf solver
 - Compute epistemic representations of this policy
 - Compare them with an FSC-based representation of the same policy

Epistemic states and features

- Definition of epistemic features
 - ▶ Propositional variables / state features f_i ∈ F, f_i predicate on the states of the MDP.
 - Literal ℓ_i : f_i or $\neg f_i$
 - ► A propositional clause of width *w* is a disjunction of *w* literals: $(f_1 \lor \cdots \lor f_p \lor \neg f_{p+1} \lor \cdots \lor \neg f_w)$
 - An epistemic feature of width *w* is an epistemic atom of the form K(ℓ₁ ∨ · · · ∨ ℓ_w)
- Interpretation:
 - Value of a feature = probability that it is true
 - Epistemic state = value of each feature (embedding)

Feature values and update - width = 1



 $a_t = "smell"$ $o_{t+1} = "wumpus-odor"$

Feature	Value	Feature	Value
$K(A_{(0,1)})$	0	$K(A_{(0,1)})$	0
$K(A_{(1,1)})$	1	$K(A_{(1,1)})$	1
$K(G_{(1,0)})$	1/4	$K(G_{(1,0)})$	1/3
$K(W_{(0,1)})$	1/3	$\mathbf{K}(W_{(0,1)})$	1
$\mathbf{K}(\neg W_{(0,1)})$	2/3	$\mathbf{K}(\neg W_{(0,1)})$	0

Introduction

- Dealing with POMDPs
- 3 From histories to epistemic states
- Post-hoc interpretation of policies Method
- **5** Limitations and future work

Post-hoc interpretation of policies - Method

- Method for post-hoc interpretation of policies
 - Obtain a (near-)optimal policy using an off-the-shelf solver. Solver used for experiments: SARSOP
 - **Project** the policy onto epistemic features
 - Compute epistemic representations of this policy
 - Linear representation through MILP solving
 - Decision tree

23/37

Projection of policy (1)

- **Setting:** nondeterministic policy \tilde{p}
- **Epistemic features:** ordered tuple $\Phi = (\varphi_1, \dots, \varphi_n)$
- Projection of belief state:
 - $\Phi(b) := (\varphi_1(b), \dots, \varphi_n(b)) \in \mathbb{R}^n$
 - Each component = value (probability) that the corresponding feature is true
- Projectable policy:
 - \tilde{p} is projectable onto Φ if there exists a function $\tilde{\pi} \colon \mathbb{R}^n \to \mathcal{P}(\mathcal{A})$
 - such that for all b:

$$\emptyset \subset ilde{\pi}(\Phi(b)) \subseteq ilde{
ho}(b)$$

Projection of policy (2)

Example with w = 1 and only positive literals.

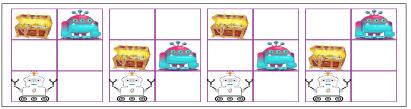
$$\mathbf{K}(A_{(2,0)}) = 1, \mathbf{K}(G_{(0,0)}) = \mathbf{K}(G_{(1,0)}) = 0.5, \mathbf{K}(W_{(0,1)}) = \mathbf{K}(W_{(1,1)}) = 0.5$$

Belief state b₁

- Projection onto epistemic features $\Phi = (\varphi_1, \dots, \varphi_5)$
- $\Phi(b_1) = (1, \ 0.5, \ 0.5, \ 0.5, \ 0.5) \in \mathbb{R}^5$

Projection of policy (3)

Belief state b₂



- $\Phi(b_2) = (1, 0.5, 0.5, 0.5, 0.5) = \Phi(b_1)$
- Same epistemic vector \Rightarrow same input to $\tilde{\pi}$
- If $\tilde{p}(b_1) \cap \tilde{p}(b_2) = \emptyset$, then:

$$\emptyset \subset ilde{\pi}(\Phi(b_1)) \subseteq ilde{
ho}(b_1) \cap ilde{
ho}(b_2) = \emptyset$$

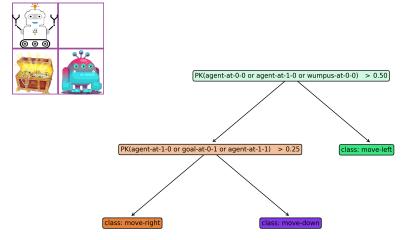
• $\Rightarrow \tilde{p}$ is **not projectable** onto Φ

Learning epistemic representations

- A supervised learning framework
 - Set of labeled examples $\{(\Phi(b), \tilde{\pi}^*(\Phi(b))) \mid b \in \mathcal{R}^*(b_0)\}$
 - Learn a classifier, e.g.
 - Linear (MILP).
 - Decision Tree
 - And many others! Logistic regression, neural networks, XGBoost...

Goal: learn to fit the data perfectly (i.e. zero classification error). **Full representation** of the policy \neq minimizing generalization error.

Policy – Decision Tree Representation



Non-Deterministic Finite-State Controller (FSC)

Non-Deterministic Finite-State Controller (FSC)

- *N* is a set of Nodes
- N_0 is a set of distinguisehed initial nodes, $N_0 \subseteq N$
- $act : N \rightarrow A$ maps a node to an action
- $\delta: N \times \mathcal{O} \rightarrow \mathcal{P}(N)$ is a transition function
- One can represent an arbitrary policy as a NFSC using a direct generalization of [Grześ et al., 2015]

- **small** epistemic **width** is enough.
- Epistemic representations vs FSCs: performances on par
- Comparing epistemic representations to one another
 - ▶ Impact of epistemic width > Positive vs negative features vs both
 - Larger epistemic width
 - \longrightarrow Bigger linear representants \neq sparser trees
 - **Trees** very often **better** than linear models
- Models especially trees can help with **features selection**.

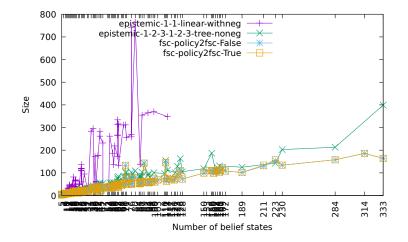


Figure: Mastermind: size results

G.L, O.B, B.Z., A.N.

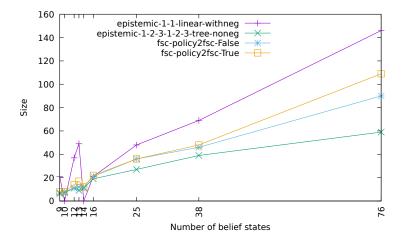


Figure: Minesweeper: size results

Comparisons of Epistemic Representations (3)

wumpus.*, discount 0.9, depth 100, ordered by belief-states

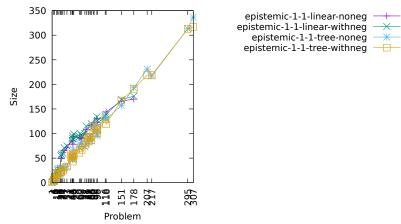
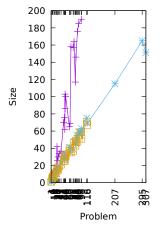


Figure: Size results on wumpus for width=1

G.L, O.B, B.Z., A.N.

Comparisons of Epistemic Representations (4)

pus.*, discount 0.9, depth 100, ordered by belief-states



epistemic-1-2-3-1-2-3-linear-noneg epistemic-1-2-3-1-2-3-linear-withneg epistemic-1-2-3-1-2-3-tree-noneg epistemic-1-2-3-1-2-3-tree-withneg

Figure: Size results on wumpus for widths=1, 2, 3

G.L, O.B, B.Z., A.N.

Introduction

- Dealing with POMDPs
- 3 From histories to epistemic states
- Post-hoc interpretation of policies Method
- **G** Limitations and future work

Limitations and future work

- Limitations
 - Number of features grows quickly ⇒ learning high-dimensional manifolds is cursed!
 - ▶ Results are only for **small instances** of our benchmarks.
 - Features are built in a systematic way but may not be the most informative nor interpretable.
- Future directions
 - Factored models to scale our experiments.
 - ► Feature selection or synthesis ?
 - Producing factual / counterfactual local explanations.
 Use decision tree splitting rules to make important state explanations.

The End

Thank you

Grześ, M., Poupart, P., Yang, X., and Hoey, J. (2015). Energy efficient execution of pomdp policies. *IEEE Transactions on Cybernetics*, 45(11):2484–2497.