

Computationally Feasible Strategies

<u>Catalin Dima¹</u> and Wojtek Jamroga²

¹ LACL, Université Paris Est Créteil
² University of Luxembourg & Polish Academy of Sciences

MAFTEC, 2025

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 1/27

<u>Outline</u>

- 1 Introduction and motivation
- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

<u>Outline</u>

1 Introduction and motivation

- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

Specification and Verification of Strategic Ability

Many important properties are based on strategic ability:

- Programs implementing desired agent behaviors.
- Controllers in a cyber-physical system.
- Plans for attackers against some systems.
- One can formalize such properties in logics of strategic ability, such as ATL or Strategy Logic
- …and verify them by model checking

Limited computational power

- Strategies/plans might be hard to implement/follow by some agents.
- Objectives might need to be achieved in limited time.
- Strategies might need to be computed/applicable to more than one single system.

Rudiments of strategy complexity?

EAV Security, CPA Security

A cryptographic protocol is insecure if the cipher can be compromised with non-negligible probability by an adversary whose **strategy** is implemented as a **probabilistic Turing machine running in polynomial time**.

The protocol depends on some security parameters.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 6/27

EAV Security, CPA Security

A cryptographic protocol is insecure if the cipher can be compromised with non-negligible probability by an adversary whose strategy is implemented as a probabilistic Turing machine running in polynomial time.

The protocol depends on some security parameters.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 6/27

Motivation: Cryptographic Security

EAV Security, CPA Security

A cryptographic protocol is insecure if the cipher can be compromised with non-negligible probability by an adversary whose strategy is implemented as a probabilistic Turing machine running in polynomial time complexity class C.

The protocol depends on some security parameters.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 6/27

<u>Outline</u>

- 1 Introduction and motivation
- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

Concurrent Game Structures, aka CGS

- Agents act simultaneously.
- Choice between two actions: push (p) or idle (i).
- Objective for agent *alice*: avoid state 2.
 - Push in state 0, idle in state 1, anything in state 2 (just for completion!).

Concurrent Game Structures, aka CGS

Agents act simultaneously.

- Choice between two actions: push (p) or idle (i).
- Objective for both agents: avoid state 2.
 - Both idle in each state.

Computational Strategies

CGS with imperfect information, aka iCGS

- Observation is blurred in states 0 or 2 for agent *alice*.
- She can only exert the same action in both states.
- Still, she has a winning strategy: push in state 0 or 2, idle in state 1.
 - Knowledge of initial state is important.

Computational Strategies

Definition 1 (Computational strategy)

A **computational strategy** s for agent a in model M is an input/output Turing machine that takes as input a sequence of a's observations, and returns as output an action for a.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 10/27

Computational Strategies

Definition 1 (Computational strategy)

A **computational strategy** s for agent a in model M is an input/output Turing machine that takes as input a sequence of a's observations, and returns as output an action for a.

But such a strategy can only be applied to one model...

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 10/27

Definition 2 (Model template)

A model template is a countable family of concurrent game structures $\mathcal{M} = (M_1, M_2, ...)$.

Definition 2 (Model template)

A model template is a countable family of concurrent game structures $\mathcal{M} = (M_1, M_2, ...)$.

All models share the same set of atomic propositions AP.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 11/27

Some examples of model templates

The familiy of mazes.

Some examples of model templates

The familiy of mazes.

A security protocol, depending on:

- Nonces.
- Security parameters.
- Roles.

Some examples of model templates

The familiy of mazes.

- A security protocol, depending on:
 - Nonces.
 - Security parameters.
 - Roles.
- A voting protocol:
 - Voters, candidates.
 - Security parameters.
- Etc.

Strategy Templates

Definition 3 (General computational strategy)

A general computational strategy S is an input/output Turing machine with 2 input tapes and 1 output tape that takes as input a model and a sequence of a's observations, and returns as output an action for a.

Strategy Templates

Example 1: getting out of any maze:

- Input tape 1: actual maze.
- Input tape 2: position in the maze.
- Output: next action.

Strategy Templates

Example 1: getting out of any maze:

- Input tape 1: actual maze.
- Input tape 2: position in the maze.
- Output: next action.
- Example 2: an attack on a security protocols:
 - Input tape 1: protocol instance generated by some security parameters/role assignment/nonce values etc.
 - Input tape 2: current history.
 - Output tape: current action of the attacker.

<u>Outline</u>

- 1 Introduction and motivation
- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

Uniform Computational Ability

Definition 4 (Uniform computational ability)

Let \mathcal{M} be a model template, φ an LTL objective in \mathcal{M} , and \mathcal{C} a complexity class.

Agents $A \subseteq Agt$ have **uniform** C-ability in \mathcal{M} for φ , denoted:

 $\mathcal{M},A\models_{\mathcal{C}}\varphi$

if there exists a general strategy S_A for A, such that:

1 For every path $\lambda \in out(\mathcal{M}, \mathcal{S}_A)$, we have that $\lambda \models_{LTL} \varphi$, and 2 There exists $f \in \mathcal{C}$ such that $\forall n, i \cdot time_{\mathcal{S}_A}(n, i) \leq f(n, i)$.

time $_{S_A}(n,i)$ = the maximal time taken by the TM S_A on model $\mathcal{M}(n)$ and observation sequences of length *i*.

Adaptive Computational Ability

Definition 5 (Adaptive computational ability)

Agents $A \subseteq Agt$ have **adaptive** C-ability in \mathcal{M} for φ , denoted:

$$\mathcal{M},A\models_{\mathcal{C}}\varphi$$

if there exists a family of computational strategies $ST = (ST_M)_{M \in \mathcal{M}}$, $ST_M = (ST_{M,a})_{a \in A}$, such that:

- **1** For every n and path $\lambda \in out(M_n, ST_{M_n})$, we have that $\lambda \models_{LTL} \varphi$, and
- **2** There exists $f \in C$ such that $\forall n, i \ . \ time_{ST}(n, i) \leq f(n, i)$.

time $_{ST}(n,i)$ = the maximal time taken by the TM ST_{M_n} on observation sequences of length i.

<u>Outline</u>

- 1 Introduction and motivation
- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

Hierarchy of Abilities

Theorem 6 (Hierarchy of abilities)

There exists a model template \mathcal{M} , coalition A in \mathcal{M} , and LTL objective φ , such that $\mathcal{M}, A \models_{\mathbf{EXPTIME}} \varphi$ but **not** $\mathcal{M}, A \models_{\mathbf{P}} \varphi$.

So, computational abilities form a proper hierarchy.

Proof idea: use an encoding of SAT as a model template.

Main Results

Hierarchy of Abilities

iCGS M_{ϕ} for $\phi \equiv (x_1 \vee \neg x_2) \land (\neg x_1 \vee x_3)$.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 20/27

Hierarchy of Abilities

- \mathcal{M}_{Sat} = games M_{ϕ} for satisfiable formulas.
- \mathcal{M}_{Unsat} = games M_{ϕ} for unsatisfiable formulas.
- Note that \mathcal{M}_{Sat} , $\{\mathbf{v}\} \models_{\mathbf{EXPTIME}} \diamond$ win.

Hierarchy of Abilities

- \mathcal{M}_{Sat} = games M_{ϕ} for satisfiable formulas.
- \mathcal{M}_{Unsat} = games M_{ϕ} for unsatisfiable formulas.
- Note that \mathcal{M}_{Sat} , $\{\mathbf{v}\} \models_{\mathbf{EXPTIME}} \Diamond$ win.
- Suppose that \mathcal{M}_{Sat} , $\{\mathbf{v}\} \models_{\mathbf{P}} \Diamond$ win.
 - I.e., verifier has a polynomial-time general strategy S_v that obtains \Diamond win in \mathcal{M}_{Sat}
- From S_v build a deterministic polynomial-time algorithm to solve SAT:
 - **1** Given a Boolean formula ϕ , construct M_{ϕ} .
 - **2** Generate the prefixes $\leq k + 2$ for all the runs of S_v in M_{ϕ} .
 - **3** If all prefixes end up in q_{\top} , return <u>true</u>; otherwise, return <u>false</u>.

Main Results

$Uniform \subsetneq Adaptive$

Theorem 7 (Uniform \subseteq Adaptative)

If $\mathcal{M}, A \models_{\mathcal{C}} \varphi$ then $\mathcal{M}, A \models_{\mathcal{C}} \varphi$.

Uniform ⊊ Adaptive

Theorem 7 (Uniform \subseteq Adaptative)

If $\mathcal{M}, A \models_{\mathcal{C}} \varphi$ then $\mathcal{M}, A \models_{\mathcal{C}} \varphi$.

Theorem 8 (Uniform \neq Adaptive)

There exists a model template \mathcal{M} , coalition A in \mathcal{M} , and LTL objective φ , such that $\mathcal{M}, A \models_{\mathbf{P}} \varphi$ but **not** $\mathcal{M}, A \models_{\mathbf{P}} \varphi$.

In other words, having a family of winning polynomial-time strategies, one for each game, **does not imply** that we have a general polynomial-time strategy to win them all.

Definition 9 (Model checking)

Input:

- A Turing machine *gen* which, given $k \in \mathbb{N}$ as input, generates M_k .
- An LTL formula φ .
- A coalition $A \subseteq Agt$.
- A complexity class C.

Output: <u>true</u> if $\mathcal{M}, A \models_{\mathcal{C}} \varphi$, otherwise <u>false</u>.

Similar definition for adaptive abilities.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 23/27

Bad news for model checking of computational ability

Theorem 10

Model checking for uniform computational abilities is undecidable for singleton coalitions with safety objectives and C = O(1).

Theorem 11

Model checking is undecidable for singleton model templates for coalitions of size 2 with safety objectives and polytime complexity.

Simple decidable cases

Theorem 12

Model checking for singleton families of games, singleton coalitions $A = \{a\}$, and complexity constraints from O(n) up is decidable.

Theorem 13

Model checking computational abilities in multi-energy families of *iCGS* and singleton coalitions is decidable.

C. Dima & W. Jamroga · Computationally Feasible Strategies

GT MAFTEC, 27/03/2025 25/27

<u>Outline</u>

- 1 Introduction and motivation
- 2 Computational Strategies
- 3 Computationally Bounded Ability
- 4 Main Results
- 5 Conclusions and future work

Conclusions and future work

- Strict hierarchy of computational strategic ability.
- Some basic undecidability and decidability results for the model-checking problem.

Future work:

- Decidability of the model-checking problem for larger (parameterized) classes of iCGS with counters.
- Application to some security game analysis.
- The general strategy verification problem.

